Search published articles


Showing 2 results for Smart Meter

M. Ajoudani, A. Sheikholeslami, A. Zakariazadeh,
Volume 16, Issue 4 (12-2020)
Abstract

The development of communications and telecommunications infrastructure, followed by the extension of a new generation of smart distribution grids, has brought real-time control of distribution systems to electrical industry professionals’ attention. Also, the increasing use of distributed generation (DG) resources and the need for participation in the system voltage control, which is possible only with central control of the distribution system, has increased the importance of the real-time operation of distribution systems. In real-time operation of a power system, what is important is that since the grid information is limited, the overall grid status such as the voltage phasor in the buses, current in branches, the values of loads, etc. are specified to the grid operators. This can occur with an active distribution system state estimation (ADSSE) method. The conventional method in the state estimation of an active distribution system is the weighted least squares (WLS) method. This paper presents a new method to modify the error modeling in the WLS method and improve the accuracy SVs estimations by including load variations (LVs) during measurement intervals, transmission time of data to the information collection center, and calculation time of the state variables (SVs), as well as by adjusting the variance in the smart meters (SM). The proposed method is tested on an IEEE 34-bus standard distribution system, and the results are compared with the conventional method. The simulation results reveal that the proposed approach is robust and reduces the estimation error, thereby improving ADSSE accuracy compared with the conventional methods.

Pardis Asghari, Alireza Zakariazadeh,
Volume 19, Issue 4 (12-2023)
Abstract

This paper proposes a novel approach to analyzing and managing electricity consumption using a clustering algorithm and a high-accuracy classifier for smart meter data. The proposed method utilizes a multilayer perceptron neural network classifier optimized by an Imperialist Competitive Algorithm (ICA) called ICA-optimized MLP, and a CD Index based on Fuzzy c-means to optimally determine representative load curves. A case study involving a real dataset of residential smart meters is conducted to validate the effectiveness of the proposed method, and the results demonstrate that the ICA-optimized MLP method achieves an accuracy of 98.62%, outperforming other classification methods. This approach has the potential to improve energy efficiency and reduce costs in the power system, making it a promising solution for analyzing and managing electricity consumption.

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.