Showing 5 results for Solar
J. Ghazanfari, M. Maghfoori Farsangi,
Volume 9, Issue 3 (9-2013)
Abstract
In this paper, a robust Maximum Power Point Tracking (MPPT) for PV array has been proposed using sliding mode control by defining a new formulation for sliding surface which is based on increment conductance (INC) method. The stability and robustness of the proposed controller are investigated to load variations and environment changes. Three different types of DC-DC converter are used in Maximum Power Point (MPP) system and the results obtained are given. The simulation results confirm the effectiveness of the proposed method in the presence of load variations and environment changes for different types of DC-DC converter topologies.
S. K. Gudey, S. Andavarapu,
Volume 17, Issue 3 (9-2021)
Abstract
A three-phase dual-port T-type asymmetrical multilevel inverter (ASMLI) using two sources, solar forming the high voltage level and the battery forming the low voltage level, is considered for grid interconnection. A vertical shifted SPWM is used for the ASMLI circuit. A transformerless system for grid interconnection is achieved for a 100-kW power range. A well-designed boost converter and a Buck/Boost converter is used on the front side of the inverter. Design of battery charge controller and its controlling logic are done and its SOC is found to be efficient during charging and discharging conditions. A closed-loop control using PQ theory is implemented for obtaining power balance at 0.7 modulation index. The THD of the current harmonics in the system is observed to be 0.01% and voltage harmonics is 0.029% which are well within the permissible limits of IEEE-519 standard. The power balance is found to be good between the inverter, load, and the grid during load disconnection for a period of 0.15s. A comparison of THD’s, voltage, current stresses on the switches, and conduction losses is also presented for a single-phase system with respect to a two-level inverter which shows improved efficiency and low THD. Hence this system can be proposed for use in grid interconnection with renewable energy sources.
A. O. Issa, A. I. Abdullateef, A. Sulaiman, A. Y. Issa, M. J. E. Salami, M. A. Onasanya ,
Volume 19, Issue 3 (9-2023)
Abstract
Grid-connected photovoltaic (PV) system is often needed whenever utilities fail to provide consumers with a reliable, sufficient and quality power supply. It provides more effective utilization of power, however, there are technical requirements to ensure the safety of the PV installation and utility grid reliability. In solar systems there is often excessive use of components, resulting in high installation costs. Consequently, appropriate measures must be taken to develop a cost-effective grid-connected PV system. An optimally sized PV system incorporated into an existing unreliable grid-connected commercial load for Mount Olive food processing is presented in this paper. The study focused on providing a reliable electricity supply which is cost-effective and environment-friendly. The techno-economic analysis of grid-connected PV/Diesel/Battery Storage systems was carried out using HOMER Pro software. Results showed that Grid/PV/BSS are technically, economically and environmentally feasible with the cost of energy at 0.136$/kWh and net present cost at $254,469. Also, the excess electricity produced by this combination is 13,264kWh/year, which generates income for the company by selling excess generated energy back to the grid if net metering were to be implemented. Furthermore, the CO2 emissions for these combinations decreased to 10,081.6 kg/year as compared to the existing systems (Grid/Diesel Generator) with emissions of 124,480 kg/year. This is an additional advantage in that it improves the greenhouse effect. A sensitivity analysis was carried out on the variation of load change, grid power price and schedule outages for the optimal system.
Abolfazl Masnabadi, Mehdi Asadi,
Volume 20, Issue 1 (3-2024)
Abstract
This paper proposed a control system for the battery charger of a solar vehicle. The battery charger has two parts, boost converter and isolated DC/AC/DC converter. The boost converter is controlled by a proposed control system based on sliding mode. In this controller, the MPPT is implemented by an extreme point of the solar cell P-V curve. Also, the control system of the DC/AC/DC converter is based on sliding mode with consideration of uncertainties of the output filter. A fast charging algorithm based on variable frequencies was carried out by the presented control system and charging of a Lithium-ion battery was done during 20 min from SOC 20% to SOC 80%. The simulation results show control system effectiveness.
Raheel Jawad, Rawaa Jawad,
Volume 20, Issue 3 (9-2024)
Abstract
Fire accidents are a disaster that can cause loss of life, property damage and permanent disability to the affected victim. Firefighting is a very important and dangerous job. Firefighters must extinguish the fire quickly and safely to prevent further damage and destruction. Detecting and extinguishing fires is a dangerous task that always puts the lives of firefighters at risk. One of the most effective tools for early fire extinguishing is the firefighting robot. Fire sensing in most industries is absolutely essential to prevent catastrophic losses. Robots with this type of embedded system can save the lives of engineers in industrial sites with hazardous conditions. This project aims to design and implement a solar-powered with artificial intelligent of mobile fire detection robot to detect fires in disaster-prone areas and thus reduce human work effort and level of destruction. Design a robot capable of moving using a rotary motor, finding a flame using a flame sensor, and extinguishing a fire using a water spray using a pump, all of which is controlled by an Arduino Uno microcontroller and programmed using an artificial intelligence (fuzzy) logic technology) using MATLAB, the inputs It has two variations:: flame and gas with three organic functions, each of which has a gas variable (low, medium, high), flame sensor (small, normal, large), and the output is a pump, (pump off , pump on ) with 9 rules. In addition to the experimental setup of the proposed system which demonstrates the performance of sensors (gas, flame) using fuzzy and implemented logic tools. The performance of the solar panels was first tested using MATLAB software as well as experimentally under different weather conditions. The pump's performance is being tested experimentally, and the robot is also being tested to detect and extinguish fires. The process of designing and implementing robotics involves creating mechanical and electrical systems. The results showed the effect of temperature change on the solar panel, as when it increases, the panel’s production capacity decreases, as well as the effect of decreased solar radiation resulting from clouds and other things, and the extent of its effect. Impact on the performance efficiency of solar panels, and observing the pump performance in terms of flow rate and height. Hence, it can be noted that the robot designed in the project is capable of discovering fire sources and extinguishing them using fire-fighting systems equipped with a water tank and a controllable pump to spray the water necessary for the process. From this study, can be concluded that the designed model is able to work according to its initial design with artificial intelligence with the least amount of errors, and therefore it can be applied in industrial applications, avoiding fire damage and extinguishing it when it occurs for the first time.