Search published articles


Showing 2 results for Speech Enhancement

M. Geravanchizadeh, S. Ghalami Osgouei,
Volume 10, Issue 4 (12-2014)
Abstract

This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS leads to better performance of adaptive filter. Furthermore, convex combination of two adaptive filters improves its performance. In this paper, new convex combinational adaptive filtering methods in the framework of speech enhancement system are proposed. The proposed methods utilize the idea of normalization and fractional derivative, both in the design of different convex mixing strategies and their related component filters. To assess our proposed methods, simulation results of different LMS-based algorithms based on their convergence behavior (i.e., MSE plots) and different objective and subjective criteria are compared. The objective and subjective evaluations include examining the results of SNR improvement, PESQ test, and listening tests for dual-channel speech enhancement. The powerful aspects of proposed methods are their low complexity, as expected with all LMS-based methods, along with a high convergence rate.
G. Alipoor,
Volume 13, Issue 4 (12-2017)
Abstract

Performance of the linear models, widely used within the framework of adaptive line enhancement (ALE), deteriorates dramatically in the presence of non-Gaussian noises. On the other hand, adaptive implementation of nonlinear models, e.g. the Volterra filters, suffers from the severe problems of large number of parameters and slow convergence. Nonetheless, kernel methods are emerging solutions that can tackle these problems by nonlinearly mapping the original input space to the reproducing kernel Hilbert spaces. The aim of the current paper is to exploit kernel adaptive filters within the ALE structure for speech signal enhancement. Performance of these nonlinear algorithms is compared with that of their linear as well as nonlinear Volterra counterparts, in the presence of various types of noises. Simulation results show that the kernel LMS algorithm, as compared to its counterparts, leads to a higher improvement in the quality of the enhanced speech. This improvement is more significant for non-Gaussian noises.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.