Showing 5 results for Threshold
M. Alaee, M. Sepahvand, R. Amiri, M. Firoozmand,
Volume 6, Issue 3 (9-2010)
Abstract
In order to detect targets upon sea surface or near it, marine radars should be
capable of distinguishing signals of target reflections from the sea clutter. Our proposed
method in this paper relates to detection of dissimilar marine targets in an inhomogeneous
environment with clutter and non-stationary noises, and is based on adaptive thresholding
determination methods. The variance and the mean values of the noise level have been
estimated in this paper, based on non-stationary, statistical methods and thresholding has
been carried out using the suggested two-pole recursive filter. Making the rate of false
alarm constant, the concerned threshold resolves the hypothesis of existence or absence of
the target signal. Performance of the mentioned algorithm has been compared with the
well-known conventional method as CA-CFAR in terms of decreasing the losses and
increasing calculation speed. The algorithm provided for detection of signal has been
implemented as a part of signal-processing algorithms of some practical marine radar. The
results obtained from the algorithm performance in a real environment indicate appropriate
workability of this method in heterogeneous environment and non-stationary interference.
A. Rana, N. Chand, V. Kapoor,
Volume 7, Issue 2 (6-2011)
Abstract
In this paper, novel hybrid MOSFET(HMOS) structure has been proposed to reduce the gate leakage current drastically. This novel hybrid MOSFET (HMOS) uses source/drain-to-gate non-overlap region in combination with high-K layer/interfacial oxide as gate stack. The extended S/D in the non-overlap region is induced by fringing gate electric field through the high-k dielectric spacer. The gate leakage behaviour of HMOS has been investigated with the help of compact analytical model and Sentaurus Simulation. The results so obtained show good agreement between model and simulation data. It is found that HMOS structure has reduced the gate leakage current to great extent as compared to conventional overlapped MOSFET structure. Further, the proposed structure had demonstrated improved on current, off current, subthreshold slope and DIBL characteristic.
E. Ehsaeyan,
Volume 12, Issue 2 (6-2016)
Abstract
Traditional noise removal methods like Non-Local Means create spurious boundaries inside regular zones. Visushrink removes too many coefficients and yields recovered images that are overly smoothed. In Bayesshrink method, sharp features are preserved. However, PSNR (Peak Signal-to-Noise Ratio) is considerably low. BLS-GSM generates some discontinuous information during the course of denoising and destroys the flatness of homogenous area. Wavelets are not very effective in dealing with multidimensional signals containing distributed discontinuities such as edges. This paper develops an effective shearlet-based denoising method with a strong ability to localize distributed discontinuities to overcome this limitation. The approach introduced here presents two major contributions: (a) Shearlet Transform is designed to get more directional subbands which helps to capture the anisotropic information of the image; (b) coefficients are divided into low frequency and high frequency subband. Then, the low frequency band is refined by Wiener filter and the high-pass bands are denoised via NeighShrink model. Our framework outperforms the wavelet transform denoising by %7.34 in terms of PSNR (peak signal-to-noise ratio) and %13.42 in terms of SSIM (Structural Similarity Index) for ‘Lena’ image. Our results in standard images show the good performance of this algorithm, and prove that the algorithm proposed is robust to noise.
M. Ashraf,
Volume 14, Issue 2 (6-2018)
Abstract
This work studies the effects of dynamic threshold design techniques on the speed and power of digital circuits. A new dynamic threshold transistor structure has been proposed to improve performances of digital circuits. The proposed switched-capacitor dynamic threshold PMOS (SC-DTPMOS) scheme employs a capacitor along with an NMOS switch in order to effectively reduce the threshold voltage of a PMOS transistor. The proposed structure improves the propagation delay of a circuit and is much suitable for those circuits with high switching factor. Post layout simulation results using TSMC 180 nm CMOS technology at 0.2V supply voltage shows 45% improvement in delay as well as 25% less power consumption at the cost of only 53% more occupied area.
G. Das, R. Panda, L. Samantaray , S. Agrawal,
Volume 18, Issue 2 (6-2022)
Abstract
Multilevel optimal threshold selection is important and comprehensively used in the area of image processing. Mostly, entropic information-based threshold selection techniques are used. These methods make use of the entropy of the distribution of the grey levels of an image. However, entropy functions largely depend on spatial distribution of the image. This makes the methods inefficient when the distribution of the grey information of an image is not uniform. To solve this problem, a novel non-entropic method for multilevel optimal threshold selection is proposed. In this contribution, simple numbers (pixel counts), explicitly free from the spatial distribution, are used. A novel non-entropic objective function is proposed. It is used for multilevel threshold selection by maximizing the partition score using the adaptive equilibrium method. A new theoretical derivation for the fitness function is highlighted. The key to the achievement is the exploitation of the score among classes, reinforcing an improvised threshold selection process. Standard test images are considered for the experiment. The performances are compared with state-of-the-art entropic value-based methods used for multilevel threshold assortment and are found better. It is revealed that the results obtained using the suggested technique are encouraging both qualitatively and quantitatively. The newly proposed method would be very useful for solving different real-world engineering optimization problems.