Search published articles


Showing 1 results for Two Different Magnetic Materials

H. Yaghobi, H. Kafash Haghparast,
Volume 11, Issue 3 (9-2015)
Abstract

Synchronous generators are of two type’s salient pole type and round rotor type. The load angle curve of a cylindrical rotor synchronous machine comprises a single sine term only while in salient pole synchronous generators, power-angle characteristic has two terms. The first term is the fundamental component due to field excitation (the same as the cylindrical rotor) and the second term includes the effect of salient pole. In fact, this term is the second harmonic component due to reluctance torque. This paper presents a study on the new design of cylindrical solid rotor synchronous generator. In this new design, rotor of the machine is designed in such a way that the required inductance values are reached to produce reluctance torque, besides electromagnetic torque due to field excitation. In this contribution, a combination of two different ferromagnetic materials is considered in the design of the rotor. In this theory, the tight connection between the different materials is very important from a mechanical point of view. In other words, this new idea and production principal has potential in some areas after some further research and engineering. But this paper is focused on magnetic flux-carrying materials and presents a study of the new design of cylindrical solid rotor synchronous generator (NCG). Then a comparative analysis was made between this new (NCG) and conventional cylindrical solid rotor synchronous generator (CCG) and the effectiveness of the new cylindrical solid rotor from a magnetic point of view is demonstrated. In this paper, mechanical and thermal aspects of design such as vibration did not analyze.

AWT IMAGE



Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.