Showing 4 results for Vector Control
A. Kazemi, A. Badri, S. Jadid,
Volume 1, Issue 4 (10-2005)
Abstract
In this paper, two vector control systems for investigating the performance of
Static Synchronous Series Compensators (SSSC) in steady state conditions are presented
that are based on famous d-q axis theory. The workability of proposed method to simplify
the SSSC mathematical expressions is shown. The performance of SSSC with two different
vector controllers, first based on d-q line currents(indirect control) and the second a
heuristic vector control based on real and reactive line powers (direct control), are
investigated through simulation. It is found that the new introduced direct control produces
better performance in controlling AC power system. Finally the simulation results of an
elementary two-machine system with SSSC in different cases are investigated.
B. Mamipour Matanag, N. Rostami, S. Tohidi,
Volume 17, Issue 2 (6-2021)
Abstract
This paper proposes a new method for direct control of active power and stator flux of permanent magnet synchronous generator (PMSG) used in the wind power generation system. Active power and stator flux are controlled by the proposed discrete time algorithm. Despite the commonly used vector control methods, there is no need for inner current control loops. To decrease the errors between reference and measured values of active power and stator flux, the space vector modulation (SVM) is used, which results in a constant switching frequency. Compared to vector control, the proposed direct control method has advantages such as higher dynamic response due to elimination of inner current control loops and no need to coordinate system transformation blocks as well as the PI controllers and their adjustment. Moreover, permanent magnet flux vector and several machine parameters such as stator inductances are not required which can improve the robustness of the control system. The proposed method can be used in both types of surface-mounted and interior PMSGs. The effectiveness of the proposed method in comparison to the vector control method with optimized PI coefficients by the particle swarm algorithm is evaluated. Simulation results performed in MATLAB/Simulink software show that higher dynamic response with lower active power and the stator flux ripple are achieved with the proposed method.
R. Kalyan, M. Venkatakirthiga, P. Raja,
Volume 19, Issue 2 (6-2023)
Abstract
The Direct power control and vector control of DFIG has known advantages, but certain disadvantages like steady state performance and transient performance of the system still persist. In order to overcome these, a novel technique based on Improved Sensorless Rotor Position Computational Algorithm with Integrated Direct Power and Vector Control (IDPVC) for S-VSC interfaced DFIG is proposed in this work. The advantages of both vector control and direct power control techniques are addressed in this method. This proposed IDPVC control minimizes the real and reactive power ripples at steady state and total harmonic distortion in stator current. In the proposed control, data acquired from sensorless rotor position computation makes the system more stable and avoids the sensor maintenance and feedback errors. The proposed system is tested for a 3.73 kW DFIG and compared with a benchmark DPC control of single VSC based DFIG. The results show the effectiveness of the approach under various wind speed conditions and found to be satisfactory.
Azzedine Khati,
Volume 20, Issue 3 (9-2024)
Abstract
In this research paper, a multivariable prediction control method based on direct vector control is applied to command the active power and reactive power of a doubly-fed induction generator used into a wind turbine system. To obtain high energy performance, the space vector modulation inverter based on fuzzy logic technique (fuzzy space vector modulation) is used to reduce stator currents harmonics and active power and reactive power ripples. Also the direct vector control model of the doubly-fed induction generator is required to ensure a decoupled control. Then its classic proportional integral regulators are replaced by the multivariable prediction controller in order to adjust the active and reactive power. So, in this work, we implement a new method of control for the doubly-fed induction generator energy. This method is carried out for the first time by combining the MPC strategy with artificial intelligence represented by Fuzzy SVM-based converter in order to overcome the drawbacks of other controllers used in renewable energies. The given simulation results using Matlab software show a good performance of the used strategy, particularly with regard to the quality of the energy supplied.