Showing 3 results for Wind Farm
H. Rajabi Mashhadi, S. M. Eslami, H. Modir Shanechi,
Volume 10, Issue 3 (9-2014)
Abstract
The main goal of this paper is to study statistical indices and evaluate AGC indices in power system which has large penetration of the WTGs. Increasing penetration of wind turbine generations, needs to study more about impacts of it on power system frequency control. Frequency control is changed with unbalancing real-time system generation and load . Also wind turbine generations have more fluctuations and make system more unbalance. Then AGC loop helps to adjust system frequency and the scheduled tie-line powers. The quality of AGC loop is measured by some indices. A good index is a proper measure shows the AGC performance just as the power system operates. One of well-known measures in literature which was introduced by NERC is Control Performance Standards(CPS). Previously it is claimed that a key factor in CPS index is related to standard deviation of generation error, installed power and frequency response. This paper focuses on impact of a several hours-ahead wind speed forecast error on this factor. Furthermore evaluation of conventional control performances in the power systems with large-scale wind turbine penetration is studied. Effects of wind speed standard deviation and also degree of wind farm penetration are analyzed and importance of mentioned factor are criticized. In addition, influence of mean wind speed forecast error on this factor is investigated. The study system is a two area system which there is significant wind farm in one of those. The results show that mean wind speed forecast error has considerable effect on AGC performance while the mentioned key factor is insensitive to this mean error.
Sh. Jadid, S. A. H. Bahreyni,
Volume 10, Issue 4 (12-2014)
Abstract
Smart Grids are result of utilizing novel technologies such as distributed energy resources, and communication technologies in power system to compensate some of its defects. Various power resources provide some benefits for operation domain however, power system operator should use a powerful methodology to manage them. Renewable resources and load add uncertainty to the problem. So, independent system operator should use a stochastic method to manage them. A Stochastic unit commitment is presented in this paper to schedule various power resources such as distributed generation units, conventional thermal generation units, wind and PV farms, and demand response resources. Demand response resources, interruptible loads, distributed generation units, and conventional thermal generation units are used to provide required reserve for compensating stochastic nature of various resources and loads. In the presented model, resources connected to distribution network can participate in wholesale market through aggregators. Moreover, a novel three-program model which can be used by aggregators is presented in this article. Loads and distributed generation can contract with aggregators by these programs. A three-bus test system and the IEEE RTS are used to illustrate usefulness of the presented model. The results show that ISO can manage the system effectively by using this model
S. Chikha,
Volume 14, Issue 3 (9-2018)
Abstract
In this paper we propose a new configuration of the wind farm connecting with an electrical grid. The proposed Wind Energy Conversion System (WECS) is based on a two stages six-leg matrix converter using to drive a two Doubly Fed Induction Machines operating at different wind speeds. Each Doubly Fed Induction Generator (DFIG) is controlled through the rotor currents using the Finite Set Model Predictive Model (FS-MBC). The proposed control method selects the optimal switching state of the converter that minimizes the cost function where it represents the desired behavior of the system. The optimal voltage vector is then applied to the output of the power converter. The most advantage of the proposed control is its simplicity in implementation, since the method avoids the use of any linear or nonlinear controllers except for the external speed loop and there is no need for any type of modulator such as in PWM or SVM modulation. A cost function is formulated according to desired performance such as regulation of the stator active and reactive powers of the DFIGs and reactive power in the filter side. The control algorithm selects and applies the optimal voltage vector to the DFIG rotor terminals. The supervision algorithm distributes the active and reactive power references in proportional way for each wind turbines. From a safety point, this algorithm provides each wind turbines still operate far from its limits. The performance of a six leg IMC in WECS chain is evaluated in term of a good tracking performance.