Search published articles


Showing 3 results for Zero Voltage Switching

E. Babaei, Z. Saadatizadeh, S. Laali,
Volume 12, Issue 2 (6-2016)
Abstract

In this paper, a new bidirectional buck-boost dc-dc converter with capability of soft switching and zero input current ripple is proposed. The coupled inductor is used in the proposed converter to eliminate the input current ripple. In the proposed converter, zero voltage switching (ZVS) and zero current switching (ZCS) can be obtained for the main and auxiliary switches, respectively. In addition, the proposed topology is analyzed in all operating modes and all equations of voltage and current for components are obtained. Moreover, the required conditions for soft switching operation and also achieving zero input current ripple are calculated. Finally, the acuracy performance of the proposed converter is reconfirmed through simulation results in EMTDC/PSCAD software program.


H. Torkaman, T. Hemmati,
Volume 14, Issue 1 (3-2018)
Abstract

This paper introduces a novel two transistors forward topology employing a z-source to achieve ZVZCS and power transformer resetting for various applications. Comparing with the forward converter, this topology has the advantage of displaying ZCS condition with an added Z-Source and no additional switches when the switches turn on, and that ZVS condition happens when the switches turn off. Duty cycle of the topology can exceed 50 percent. As a result, these converters are suitable for applications with high efficiency. In this paper, structure and properties of the topology will be discussed in details. Then the design principles will be presented. Finally, the benefits aforementioned will be approved in practice through a simple forward converter.

Pravat Biswal, Veera Venkata Subrahmanya Kumar Bhajana, Pavel Drabek,
Volume 18, Issue 4 (12-2022)
Abstract

This paper proposes two new soft-switching transformerless converters with high voltage conversion ratio. These proposed converters achieve soft-switching each with a single auxiliary resonant cell. The merit of these converters is reduced switching losses with lesser number of devices. The main switching devices are turned off with zero current switching (ZCS). Apart from the soft-switching feature, the voltage conversion ratio is increased in comparison with the existing topologies. The operating principles and the simulation results on 12V/200V/500W converter system are presented in this paper.
 

Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.