Search published articles


Showing 2 results for Power-Sharing

M. Keshavarz, A. Doroudi, M. H. Kazemi, N. Mahdian Dehkordi,
Volume 17, Issue 2 (6-2021)
Abstract

The droop control strategy is the most common approach for microgrids control but its application is limited due to frequency deviation following a load change. Complementary control strategy has then been proposed to solve the problem using a communication network. However, under this strategy, regular loads profile produces a continuous change of output power of all distributed generators (DGs) and their generation changes seem to be permanent. This also causes continuous data exchange between DGs through communication links. This paper shows the possibility of adapting the droop/isochronous control methodology used by synchronous generators in conventional power systems to provide frequency control and power balance to inverter-based distributed generation power systems. To this end, this paper presents a centralized complementary control framework for the management of power-sharing and sustaining frequency in its nominal range in microgrids using a hybrid droop-isochronous control system.  The proposed method is event-triggered based and communication between DGs is only needed when the output power of the isochronous generator exceeds its power limits. The method provides an efficient and reliable control system and has a simple concept, easy, and cost-effective implementation. Simulations in MATLAB/SimPower are performed on a typical microgrid under various conditions to evaluate the performance of the proposed controller.

Nurul Husna Abd Wahab, Mohd Hafizuddin Mat, Norezmi Md Jamal, Nur Hidayah Ramli,
Volume 21, Issue 2 (6-2025)
Abstract

In islanded microgrids, circulating currents among parallel inverters pose significant challenges to system stability and efficient power distribution. Traditional droop control methods often struggle to manage these currents effectively, leading to inefficiencies and potential system damage. This study introduces an advanced fuzzy-robust droop control strategy that integrates fuzzy logic with robust droop control to address these challenges. By incorporating fuzzy logic, the proposed strategy enhances the adaptability of droop control to varying system conditions, improving the management of circulating currents and ensuring more accurate power sharing among inverters. Comprehensive mathematical modeling and extensive simulation analyses validate the performance of this control strategy. The results show that the fuzzy-robust droop control method significantly outperforms conventional approaches, achieving up to a 70% reduction in circulating currents. This improvement leads to a substantial reduction in power losses and enhances the dynamic response under varying load conditions. Additionally, the strategy improves voltage and frequency regulation, contributing to the overall stability and reliability of the microgrid. The findings provide a robust solution to the longstanding issue of circulating currents, optimizing microgrid operations, and paving the way for more efficient and resilient distributed energy systems. The advanced control strategy presented in this study not only addresses critical challenges but also demonstrates the potential for innovative methodologies to meet the growing demands of future energy infrastructures, where reliability and efficiency are essential.


Page 1 from 1     

Creative Commons License
© 2022 by the authors. Licensee IUST, Tehran, Iran. This is an open access journal distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.